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1 Summary of Progress

The overall (three-year) goal of the proposed work is to develop a classical density functional theory (DFT)
of ions and charged polymers near dielectric interfaces in a three-dimensional system. Over the 3 years of the
grant, we have had great success and some setbacks, as might be expected for any research project. These
include:

� The biggest success was publication of the paper describing the general theory in Journal of Physi-
cal Chemistry Letters. This is the big theory paper to come out of this project and represents the
most important goal of the proposed work (i.e., constructing the functional itself). In the year since
publication, it has already been cited 3 times, indicating an impact of the work.
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� Numerical implementation of an e¤ecient algorithm to solve the dielectric DFT equations is still being
implemented and work on this front will continue beyond the completion of the grant. This is the
biggest setback of the project. The �nding of an e¢ cient algorithm to numerically solve the dielectric
DFT equations was much more di¢ cult than aniticipated. The root of the problem is that the reaction
�eld is not a radial interaction between ions. Because of this, fast Fourier transforms (FFTs) can no
longer be used and one must be clever in making the program scale with N logN rather than N2 where
N is the number of grid points to be solved.

� On the other hand, one great numerical success was in implementing fast computational methods for
the reaction in 3D. Matt Knepley at the Computational Institute of the University of Chicago, through
a subcontract of this grant, has implemented a Fast Multipole Method (FMM) and published a paper
on this topic.

� An exciting o¤shoot of the DFT work was a collaboration with Dezs½o Boda in Hungary that resulted
an alternative method (not using DFT at all) of ions at dielectric interfaces that we developed. The
speci�c goal of the proposed work is to develop a DFT of ions at a dielectric interface and this has
been done (as just mentioned). The broader goal of the proposed to work is develop methods that
any scientist can use when working with ions at a dielectric interface, especially in three dimensional
geometries. We have started to develop another method with Dr. Boda, a long-time collaborator, called
the Local Equilibrium Grand Canonical Monte Carlo (LE-GCMC). Because we have already developed
a fast method to include dielectrics in Monte Carlo, this method will allow for computing ion currents
(currently at the drift-di¤usion level, but not limited to that) in complex 3D geometries that will be
very challenging with DFT. The grant sponsored Dr. Boda�s one month visit to the PI�s institution to
work on this. It is important to note that this work is in addition to the DFT development; LE-GCMC
came out of discussions that Dr. Boda and the PI had in discussing the dielectric DFT. Moreover, Dr.
Boda�s visit helped greatly in moving toward an e¢ cient algorithm to numerically solve the dielectric
DFT equations.

� Another o¤shoot of this work is the hope of coupling the new dielectric DFT functional to experiments.
This work, which will continue beyond the completion of the grant, is with experimentalists working
on nano�uidic devices. This resulted in 2 papers (a third is in preparation), including one in the
prestigeous Nano Letters.

Below, a technical summary of the scienti�c work done over the course of the grant is given.

2 Technical Details of Dielectric DFT Implementation

In the following ions are in dielectric � near a dielectric interface with dielectric constant �wall. The interface is
assumed to be smooth and hard so that ions (assumed to be charged, hard spheres) cannot overlap any part of
the wall dielectric. The goal is write down an approximate free energy functional FD [f�k (x)g] to determined
the ion density pro�les �i (x) for all the ion species i. This is done by �nding the dielectric component of the
electrochemical potential, which is given by the functional derivative of FD (i.e., �FD=��i (x)). The total
electrochemical potential (of which we only determine one component in the proposed work) is then used to
�nd the equilibrium density pro�les �i (x). These are plotted in Fig. 1.
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divalent

1:tif

Figure 1: Comparison of the new dielectric DFT (lines) with MC simulations (symbols) for �ve di¤erent
dielectric constants of the wall (the ions�dielectric constant is always 80). Top panel: 0.1 M monovalent
ions, both with diameter 3 Å. Both cation and anion pro�les are identical in this case so only one is shown.
Bottom panel: 1 M divalent cation and 2 M monovalent anions, both with diameter 3 Å. The cation pro�le
is shown.

2.1 Perturbation theory

For a general three dimension system, the interaction potential perturbation technique gives that the dielec-
tric contribution to the free energy functional is given by

FD [f�k (x)g] =
1

2

X
i;j

Z 1

0

Z Z
�
(2)
ij (x;x

0;�) Dij (x;x
0) dxdx0d� (1)

+
1

2

X
i

Z
�i (x) 

D
ii (x;x) dx

where �(2)ij (x;x
0;�) is the two-body distribution function for an ion of species i at x and an ion of species j

at x0 for the interaction potential

 ij (x;x
0) =  Cij (x;x

0) + � Dij (x;x
0) (2)

with  Cij (x;x
0) the Coulomb interaction and  Dij (x;x

0) the dielectric reaction potential (i.e., the potential
felt by an ion with valence zj at x0 produced by an ion with valence zi at x). When the system has a planar
dielectric interface,

 Dij (x;x
0) / �� �wall

�+ �wall
: (3)

(This is still a very good approximation even when the dielectric interface is not a plane.) Therefore, we can
make the correspondence

� =

������ ���+ ��

���� (4)

where �� ranges between � and �wall. (The absolute value is necessary to prevent � < 0 when �wall > �.)
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We �rst describe the two-body distribution function in terms of a pair correlation function gij (x;x0;�):

�
(2)
ij (x;x

0;�) = �i (x;�) �j (x
0;�) gij (x;x

0;�) : (5)

We know that
gij (x;x

0;�) = 0 (jx� x0j < Ri +Rj) (6)

when the ions overlap and that when � = 0 only the ion-ion correction hionij (x;x
0) and the � = 0 ion pro�le

near the wall contribute. Each of these factors is approximated. First, we assume that the densities �k
change linearly with �:

�k (x;�) =
�
�k (x)� �h0ik (x)

�
�+ �

h0i
k (x) (7)

where �k (x) is the density pro�le we aim to calculate (� = 1) and �
h0i
k (x) is the density pro�le of the

unperturbed system in the absence of dielectric interfaces (� = 0) for which we presume there is a good DFT
available. This linear change with � has been vari�ed in the Monte Carlo simulation results of Fig. 1.
Second, we assume that the total correlation function (TCF) is the sum of TCFs, one from an ion of

species i at x and one from its image charge, with a residual term from the case of no induced charge:

gij (x;x
0;�)� 1 � hionij (x;x

0) + hwallij (x0) + hDij (x;x
0;�) : (8)

The dielectric TCF is due to ions packing around the image charge which we assume (by Debye-Hückel) is
proportional to the magnitude of the image charge and is otherwise the bulk TCF:

hDij (x;x
0;�) � �� �wall

�+ �wall
hDij (x

�;x0) = � � sgn
�
�� �wall
�+ �wall

�
� hDij (x�;x0) (9)

where the location of the image charge is x� (which is a function of x). Therefore,

gij (x;x
0;�)� 1 �

(
hionij (x;x

0) + hwallij (x;x0) + � � sgn
�
���w a l l
�+�w a l l

�
� hDij (x�;x0) jx� x0j � Ri +Rj

�1 jx� x0j < Ri +Rj
: (10)

If we chose hionij to be the bulk TCF hbulkij , then the total charge from the ions around the central ion
would not necessarily cancel the central charge. Therefore, hionij is de�ned as a rescaled bulk TCF:

hionij (x;x
0) =

�
�i (x)h

bulk
ij (jx� x0j) if jx� x0j � Rij

�1 otherwise
(11)

where
�i (x) =

�zieP
j qij (x)

(12)

with

qij (x) = zje�
bath
j

Z
jx�x0j�Rij

hionij (jx� x0j) e�V
e x t
j (x0)=kT dx0: (13)

qij (x) is the charge of species j around an ion of species i located at x. By the overlap condition in Eq. (6),
we then require that hwallij and hDij are 0 when jx� x0j < Ri +Rj .
The uncharged wall TCF hwallij is nothing but the ion pro�le of the ions when � = 0:

hwallij (x0) =

(
�
h0i
j (x

0)
�b a t hj

� 1 jx� x0j � Ri +Rj

0 jx� x0j < Ri +Rj :
(14)

4



With these approximations,

FD [f�k (x)g]�
1

2

X
i

Z
�i (x) 

D
ii (x;x) dx

� 1

2

X
i;j

Z 1

0

Z Z h�
�i (x)� �h0ii (x)

�
�+ �
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i (x)

i h�
�j (x

0)� �h0ij (x0)
�
�+ �

h0i
j (x0)

i
(15)

�
�
hionij (x;x

0) + hwallij (x0) + � � sgn
�
�� �wall
�+ �wall

�
� hDij (x�;x0) + 1

�
 Dij (x;x

0) dxdx0d�

=
1
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+
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This can be rewritten because the terms without the correlation function are solutions to Poisson equations:

�Di (x) �
X
j

Z �
1

3
�j (x

0) +
1

6
�
h0i
j (x0)

�
hionij (x;x

0) Dij (x;x
0) dx0 (18)

+
1

3
zie�D (x) +

1

6
zie�

h0i
D (x) (19)

+
X
j

Z �
1

3
�j (x
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1

6
�
h0i
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�
hwallij (x0) Dij (x;x

0) dx0

+ sgn

�
�� �wall
�+ �wall

�X
j

Z �
1

4
�j (x

0) +
1

12
�
h0i
j (x0)

�
hDij (x

�;x0) Dij (x;x
0) dx

+
1

2
 Dii (x;x)

where �D is the solution of the Poisson equation with the ion density pro�les at their image charge locations
and with corresponding reduced charge.

2.2 Single planar dielectric interface

If the dielectric boundary is a single planar interface at x = 0 with dielectric constant � where the ions are
and �wall behind the wall (where no ions are), then

 Dij (x;x
0) =  Dij (x+ x

0; y � y0; z � z0) (20)

=
zizje

2

4���0

�� �wall
�+ �wall

1q
(x+ x0)

2
+ (y � y0)2 + (z � z0)2

(21)

where x = (x; y; z) and similarly for x0. The densities have planar symmetry so that �j (x0) = �j (x
0). ThenZ

�j (x
0)

�ZZ
hionij (x;x

0) Dij (x;x
0) dy0dz0

�
dx0

=

Z
�j (x

0)

�ZZ
hionij

�
x� x0;

p
u2 + v2

�
 Dij

�
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p
u2 + v2

�
dudv

�
dx0 (22)

= 2�

Z
�j (x

0)

�Z 1

0

whionij (x� x0; w) Dij (x+ x0; w) dw
�
dx0 (23)

=
zizje
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Z
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0@Z 1

0
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2
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dw

1A dx0 (24)

because

 Dij (a;w) =
zizje

2

4���0

�� �w
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1p
a2 + w2

: (25)

We must therefore evaluate the integralZ 1

0

hionij (x� x0; w)
wq

(x+ x0)
2
+ w2

dw =

Z 1

jx+x0j
hionij

�
x� x0;

q
v2 � (x+ x0)2

�
dv (26)

where

v =

q
(x+ x0)

2
+ w2: (27)
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2.3 Ion TCF

For the ion TCF, in Eq. (11) we de�ne

hionij (x;x
0) =

�
�i (x)h

bulk
ij (jx� x0j) if jx� x0j � Rij

�1 otherwise.
(28)

Now we make the ansatz that the bulk TCF has the form of a Yukawa potential Y (r; a; b), similar to that
of the linearized Poisson-Boltzmann solution, but in this case the coe¢ cients may be �t to, for example, the
solution of the nonlinearized Poisson-Boltzmann equation:

hbulkij (r) � Hij (s; w) � Y
�
s; w; cij1 ; c

ij
2 ; Rij

�
(29)

=
cij1p

s2 + w2
exp

 
Rij �

p
s2 + w2

cij2

!
(30)

where Rij is the contact radius of the two ion species and the c
ij
k are constants (either from LPB or �tted

to the NPB solution).
Next we evaluate Eq. (26). For hionij , it is �1 when jx� x0j < Rij and the decaying function Hij

otherwise. For jx� x0j < Rij , we must have

R2ij > (x� x0)
2
+ w2 (31)

= (x� x0)2 + v2 � (x+ x0)2 (32)

or
v2 � R2ij + 4xx

0: (33)

But, v is also bounded below because w � 0, so for jx� x0j < Rij we must have

(x+ x0)
2 � v2 � R2ij + 4xx

0: (34)

Therefore, if

jx+ x0j �
q
R2ij + 4xx

0; (35)

then Z 1

jx+x0j
hionij

�
x� x0;

q
v2 � (x+ x0)2

�
dv

= �
Z pR2

ij+4xx
0

jx+x0j
dv +

Z 1

p
R2
ij+4xx

0
Hij

�
x� x0;

q
v2 � (x+ x0)2

�
dv (36)

= jx+ x0j �
q
R2ij + 4xx

0 (37)

+

Z 1

p
R2
ij+4xx

0
Hij

�
x� x0;

q
v2 � (x+ x0)2

�
dv:

Otherwise, if

jx+ x0j >
q
R2ij + 4xx

0; (38)

then Z 1

jx+x0j
hionij

�
x� x0;

q
v2 � (x+ x0)2

�
dv =

Z 1

jx+x0j
Hij

�
x� x0;

q
v2 � (x+ x0)2

�
dv: (39)
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We can put these together by letting

mij (x; x
0) = max

n
jx+ x0j ;

p
Rij + 4xx0

o
(40)

so that Z 1

jx+x0j
hionij

�
x� x0;

q
v2 � (x+ x0)2

�
dv

= jx+ x0j �mij (x; x
0) +

Z 1

mij(x;x0)

Hij

�
x� x0;

q
v2 � (x+ x0)2

�
dv: (41)

This last integral is the �rst major bottleneck in the numerical calculation because of the x � x0 and
x + x0 dependence of the integrand. This makes it nearly impossible to do in O (N) time and generally in
O
�
N2
�
time. O

�
N2
�
time is not useful for practical applications. For example, the pro�les in Fig. 1 we

done using N = 128 grid points and took ~2 minutes. For practical problems, at least N = 1000 is necessary,
if not N = 10000. With O

�
N2
�
time, this would take ~200 minutes which is not practical. The last period

of the grant spent signi�cant portions of time to evaluate this integral e¢ ciently, using various techniques
from polynomial interpolation to Gaussian quadratures but none have� so far� been e¢ cient enough for a
practical real-world problem.

2.3.1 Scaling of ion TCF

By Eq. (13),

qij (x) = zje�
bulk
j

Z
jx�x0j�Rij

hionij (jx� x0j) e�V
e x t
j (x0)=kT dx0 (42)

= 2�zje�
bulk
j

Z
e�V

e x t
j (x0)=kT

 Z 1

Mij(x�x0)
wHij (x� x0; w) dw

!
dx0 (43)

where
M2
ij (x� x0) = max

n
R2ij � (x� x0)

2
; 0
o

(44)

because the lower bound for the radial coordinate w (in cylindrical coordinates) is
q
R2ij � (x� x0)

2 if

jx� x0j < Rij and 0 when x� x0 is outside the contact sphere. ThenZ 1

Mij(x�x0)
wHij (x� x0; w) dw

= cij1 e
Rc=c

ij
2

Z 1

Mij(x�x0)
w

1q
(x� x0)2 + w2

exp

0@�
q
(x� x0)2 + w2

cij2

1A dw: (45)

The integral can be evaluated with the substitution

v =

q
(x� x0)2 + w2 (46)

dv =
wq

(x� x0)2 + w2
dw: (47)
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Then

Z 1

Mij(x�x0)
w

1q
(x� x0)2 + w2

exp

0@�
q
(x� x0)2 + w2

cij2

1A dw

=

Z 1

maxfRij ;jx�x0jg
exp

 
� v

cij2

!
dv (48)

= cij2 exp

 
�max fRij ; jx� x

0jg
cij2

!
(49)

so that

qij (x) = 2�zje�
bulk
j cij1 c

ij
2 e

Rij
c =c

ij
2

Z
e�V

e x t
j (x0)=kT exp

 
�max fRij ; jx� x

0jg
cij2

!
dx0 (50)

= 2�zje�
bulk
j cij1 c

ij
2 e

Rij
c =c

ij
2

Z 1

Rj+xw

exp

 
�max fRij ; jx� x

0jg
cij2

!
dx0 (51)

= 2�zje�
bulk
j cij1 c

ij
2 e

Rij
c =c

ij
2

Z 1

Rj

exp

 
�max fRij ; jx0 � x

0
0jg

cij2

!
dx00 (52)

where xw is the x location of the wall and
x0 = x� xw (53)

is the distance of x from the wall, with a similar de�nition for x00.
To evaluate max fRij ; jx0 � x00jg, consider that jx0 � x00j < Rij is equivalent to

x0 �Rij < x00 < x0 +Rij : (54)

For the ions, x0 > 0 so thatZ 1

Rj

exp

 
�max fRij ; jx0 � x

0
0jg

cij2

!
dx00

=exp

 
�Rij
cij2

!Z x0+Rij

maxfx0�Rij ;Rjg
dx00 +

Z 1

x0+Rij

exp

 
�jx0 � x

0
0j

cij2

!
dx00 (55)

+

Z maxfx0�Rij ;Rjg

Rj

exp

 
�jx0 � x

0
0j

cij2

!
dx00

=exp

 
�Rij
cij2

!
(x0 +Rij �max fx0 �Rij ; Rjg) +

Z 1

Rij

exp

 
� s0

cij2

!
ds0 (56)

+

Z maxfx0�Rij ;Rjg�x0

Rj�x0
exp

 
�js

0j
cij2

!
ds0:
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The last integral can be evaluated as follows:Z maxfx0�Rij ;Rjg�x0

Rj�x0
exp

 
�js

0j
cij2

!
ds0

=

8<:
R �Rij

Rj�x0 exp

�
�js

0j
cij2

�
ds0 if max fx0 �Rij ; Rjg = x0 �Rij

0 otherwise
(57)

=

( R x0�Rj

Rij
exp

�
� s0

cij2

�
ds0 if max fx0 �Rij ; Rjg = x0 �Rij

0 otherwise.
(58)

Then Z 1

Rj

exp

 
�max fRij ; jx0 � x

0
0jg

cij2

!
dx00 (59)

=exp

 
�Rij
cij2

!
(x0 +Rij �max fx0 �Rij ; Rjg) + cij2 exp

 
�Rij
cij2

!
(60)

+cij2

(
exp

�
�Rij

cij2

�
� exp

�
�x0�Rj

cij2

�
if max fx0 �Rij ; Rjg = x0 �Rij

0 otherwise
(61)

which de�nes qij (x) through Eq. (52).

2.4 Dielectric TCF

For the dielectric TCF hDij , we use an LPB approach around each surface charge element � at s. Speci�cally,
consider an ion of species i at x that induces a surface charge pro�le �i (s;x) for s on the dielectric interface
S. Next, we assume that the ions accumulating around this surface charge element make a potential

�i (s;x
0;x) � ai (x)

4��0

�i (s;x)

js� x0j exp
�
�js� x

0j
�

�
(62)

where Y is the Yukawa potential with characteristic lengthscale (the Debye length)

�2 =

s
��0kT

e2
P

j z
2
j �
bath
j

(63)

and with an as-yet-undetermined coe¢ cient ai (x). Because the LPB is additive,

�i (x
0;x) =

Z
S

�i (s;x
0;x) ds (64)

=
ai (x)

4��0

Z
S

�i (s;x)

js� x0j exp
�
�js� x

0j
�

�
ds: (65)

With the LPB approximation,

hDij (x;x
0) �

�
� zje
kT �i (x

0;x) jx� x0j � Rij
0 jx� x0j < Rij :

(66)

10



In the planar geometry,

�i (x
0;x) =

Z
S

�i (s;x)

js� x0j exp
�
�js� x

0j
�

�
ds

= ai (x)
1

2�

�� �wall
�+ �wall

zie

4���0
(67)

�
Z 1

�1

Z 1

�1

x0�
x20 + (y � sy)

2
+ (z � sz)2

�3=2 exp
�
�
�
(x00)

2
+ (y0 � sy)2 + (z0 � sz)2

�1=2
=�

�
�
(x00)

2
+ (y0 � sy)2 + (z0 � sz)2

�1=2 dsydsz:

This double integral can be simpli�ed:

Z 1

�1

Z 1

�1

x0�
x20 + (y � sy)

2
+ (z � sz)2

�3=2 exp
�
�
�
(x00)

2
+ (y0 � sy)2 + (z0 � sz)2

�1=2
=�

�
�
(x00)

2
+ (y0 � sy)2 + (z0 � sz)2

�1=2 dsydsz

=

Z 1

�1

Z 1

�1

x0�
x20 + (uy + Y )

2
+ (uz + Z)

2
�3=2 exp

�
�
�
(x00)

2
+ u2y + u

2
z

�1=2
=�

�
�
(x00)

2
+ u2y + u

2
z

�1=2 duyduz (68)

=

Z 1

0

Z 2�

0

x0r�
x20 + (r cos (�) + Y )

2
+ (r sin (�) + Z)

2
�3=2 exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 d�dr (69)

= x0

Z 1

0

r

0B@Z 2�

0

d��
x20 + (r cos (�) + Y )

2
+ (r sin (�) + Z)

2
�3=2

1CA exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 dr (70)

where

uy = sy � y0 = r cos (�) (71)

uz = sz � z0 = r sin (�) (72)

with Y = y0 � y and Z = z0 � z. With the substitution

� = � + c (73)

tan (c) =
a

b
; (74)

one can show that Z 2�

0

f (a sin (�) + b cos (�)) d� =

Z 2�

0

f
�p

a2 + b2 cos (�)
�
d� (75)

= 2

Z �

0

f
�p

a2 + b2 cos (�)
�
d�: (76)
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Therefore,Z 2�

0

d�

(x20 + r
2 + Y 2 + Z2 + 2r (Y cos (�) + Z sin (�)))

3=2
= 2

Z �

0

d�

(x20 + r
2 + w2 + 2rw cos (�))

3=2
(77)

=
2

(x20 + r
2 + w2)

3=2

Z �

0

d��
1 + 2rw

x20+r
2+w2

cos (�)
�3=2
(78)

and �nally

�i (x
0;x) = �i (x0; x

0
0; w) (79)

= ai (x)
�� �wall
�+ �wall

zie

4���0
x0

Z 1

0

r

(x20 + r
2 + w2)

3=2
�

�
2rw

x20 + r
2 + w2

� exp ���(x00)2 + r2�1=2 =���
(x00)

2
+ r2

�1=2 dr

(80)

where

� (p) =
1

�

Z �

0

d� 0

(1 + p cos (� 0))
3=2

: (81)

For 0 � p � 1, the function f (p) can be well approximated by

� (p) � 1� 0:962 278 036 p+ 0:675 857 675 p2 � 0:262 241 607 p3
1� p : (82)

Then

�Di (x) =
X
j

Z
�#j (x

0)

�ZZ
hDij (x;x

0) Dij (x;x
0) dy0dz0

�
dx0 (83)

� � e

kT

X
j

zj

Z
�#j (x

0)

�ZZ
�i (x

0;x) Dij (x;x
0) dy0dz0

�
dx0 (84)

= �2� e

kT

X
j

zj

Z
�#j (x

0)

 Z
q
(x0�x00)

2
+w2>Rij

w�i (x0; x
0
0; w) 

D
ij (x+ x

0; w) dw

!
dx0: (85)

This last integral is the second major bottleneck in the numerical calculation because of the x and x0

dependence of the integrand and because for each x and x0, �i (x0; x00; w) must be calulated in another
di¢ cult integral.

2.4.1 Scaling the dielectric TCF

Like with the ion TCF, we require charge neutrality of the ions around the dielectric induced charge:

��
Z
S

�i (s;x) ds = e
X
j

zj�
bath
j

Z
hDij (x;x

0) e�Vj(x
0)=kT dx0: (86)

For the planar case, we know that

�

Z
S

�i (s;x) ds = zie
�� �w
�+ �w

: (87)

From above we have that

hDij (x;x
0) =

�
� zje
kT �i (x

0;x) jx� x0j � Rij
0 jx� x0j < Rij

(88)

12



so we wind up with

��
Z
S

�i (s;x) ds = e
X
j

zj�
bath
j

Z
hDij (x;x

0) e�Vj(x
0)=kT dx0 (89)

= � e2

kT

X
j

z2j �
bath
j

Z
jx�x0j�Rij

�i (x
0;x) e�Vj(x

0)=kT dx0 (90)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

�1
e�Vj(x

0
0)=kT

Z
q
(x0�x00)

2
+w2>Rij

w�i (x0; x
0
0; w) dwdx

0
0 (91)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

Z 1

Mij(x0�x00)
w�i (x0; x

0
0; w) dwdx

0
0 (92)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

Z 1

0

w�i (x0; x
0
0; w) dwdx

0
0 (93)

+ 2�
e2

kT

X
j

z2j �
bath
j

Z 1

Rj

Z Mij(x0�x00)

0

w�i (x0; x
0
0; w) dwdx

0
0 (94)

where
M2
ij (x0 � x00) = max

n
R2ij � (x0 � x00)

2
; 0
o
: (95)

For the �rst integral, we use the fact thatZ 1

0

w
r

(x20 + r
2 + w2)

3=2
�

�
2rw

x20 + r
2 + w2

�
dw =

r

x0
(96)

to determine that

� 2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

Z 1

0

w�i (x0; x
0
0; w) dwdx

0
0 (97)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

ai (x)
�� �wall
�+ �wall

zie

4���0
x0

Z 1

0

r

x0

exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 drdx00 (98)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

ai (x)
�� �wall
�+ �wall

zie

4���0

Z 1

0

r

exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 drdx00 (99)

= �2� e
2

kT

X
j

z2j �
bath
j

Z 1

Rj

ai (x)
�� �wall
�+ �wall

zie

4���0

Z 1

x00

exp [�u=�] dudx00 (100)

= �2� e
2

kT
ai (x)

�� �wall
�+ �wall

zie

4���0
�
X
j

z2j �
bath
j

Z 1

Rj

exp

�
�x

0
0

�

�
dx00 (101)

= �2� e
2

kT
ai (x)

�� �wall
�+ �wall

zie

4���0
�2
X
j

z2j �
bath
j exp

�
�Rj
�

�
: (102)
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For the second integral,

2�
e2

kT

X
j

z2j �
bath
j

Z 1

Rj

Z Mij(x0�x00)

0

w�i (x0; x
0
0; w) dwdx

0
0 (103)

= 2�
e2

kT
ai (x)

�� �wall
�+ �wall

zie

4���0
x0
X
j

z2j �
bath
j fij (x0)

exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 drdx00 (104)

where

fij (x0) =

Z 1

Rj

Z 1

0

"Z Mij(x0�x00)

0

w
r

(x20 + r
2 + w2)

3=2
�

�
2rw

x20 + r
2 + w2

�
dw

# exp ���(x00)2 + r2�1=2 =���
(x00)

2
+ r2

�1=2 drdx00

(105)
which must be determined numerically. This is simpli�ed because

Mij (x0 � x00) =
( q

R2ij � (x0 � x00)
2 jx0 � x00j < Rij

0 jx0 � x00j � Rij
(106)

which implies that
x0 �Rij < x00 < x0 +Rij (107)

and

fij (x0) =

Z x0+Rij

maxfRj ;x0�Rijg

Z 1

0

24Z q
R2
ij�(x0�x00)

2

0

w

(x20 + r
2 + w2)

3=2
�

�
2rw

x20 + r
2 + w2

�
dw

35 (108)

� r
exp

�
�
�
(x00)

2
+ r2

�1=2
=�

�
�
(x00)

2
+ r2

�1=2 drdx00:

The scaling factor is then

ai (x) =
2��0kT

e2
1

�2
P

j z
2
j �
bath
j exp

�
�Rj

�

�
� x0

P
j z

2
j �
bath
j fij (x0)

: (109)

2.5 Wall component

For the wall component, X
j

Z �
1

3
�j (x

0) +
1

6
�
h0i
j (x0)

�
hwallij (x0) Dij (x;x

0) dx0 (110)

=
X
j

Z
jx�x0j�Rij

�#j (x
0)

 
�
h0i
j (x0)

�bathj

� 1
!
 Dij (x;x

0) dx0 (111)

=
X
j

Z
�#j (x

0)

 
�
h0i
j (x0)

�bathj

� 1
!
 Dij (x;x

0) dx0 (112)

�
X
j

Z
jx�x0j<Rij

�#j (x
0)

 
�
h0i
j (x0)

�bathj

� 1
!
 Dij (x;x

0) dx0: (113)
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The �rst intergal is the solution of a Poisson equation similar to �D above. For the second integral,

X
j

Z
jx�x0j<Rij

�#j (x
0)

 
�
h0i
j (x0)

�bathj

� 1
!
 Dij (x;x

0) dx0 (114)

= 2�
X
j

Z
�#j (x

0)

 
�
h0i
j (x0)

�bathj

� 1
! Z Mij(x0�x00)

0

w Dij (x; x
0; w) dw

!
dx0 (115)

= 2�
X
j

Z x+Rij

x�Rij

�#j (x
0)

 
�
h0i
j (x0)

�bathj

� 1
!0@Z q

R2
ij�(x�x0)

2

0

w Dij (x; x
0; w) dw

1A dx0 (116)

=
zie

2

2��0

�� �w
�+ �w

X
j

zj

Z x+Rij

x�Rij

�#j (x
0)

 
�
h0i
j (x0)

�bathj

� 1
!�q

R2ij + 4x0x
0
0 � (x0 + x00)

�
dx0: (117)

2.6 Toward an e¢ cient numerical implementation

For the Journal of Physical Chemistry Letters paper, the dielectric DFT equations were solved using a
specially written program developed by the PI. However, this code is very ine¢ cient, not practical for real
problems, and not accessible to other scientists. Therefore, the PI rewrote the entire DFT code (dielectric and
older components) using the platform ofMathematica. Mathematica was chosen because it is widely available
for all computer platforms (Windows, Mac, Linux) and has excellent support and upgrades. Mathematica
also includes a huge number of built-in functions that make programming signi�cantly easier.
Since the end of Year 1, much time has been spent rewriting the PI�s original DFT code (the part without

the dielectric functional) in Mathematica. This work is nearly done. Part of the grant went to supporting
an undergraduate student (Jordan Ho¤mann, Johns Hopkins University) to put the code through its paces
by doing calculations on nano�uidic devices (see below). This very rigorous testing proved necessary, with
Jordan �nding many places of improvement for the code (e.g., systems for which it was slow, systems for
which is did not �nd an answer, and on rare occasions systems for which is produced an incorrect answer).
The continuing work, beyond the completion of the grant, is the deriving and implementation of an

e¢ cient numerical algorithm for the bottleneck areas identi�ed above.

3 Technical Details of FMM Implementation (written by Dr. Matt
Knepley)

3.1 FMM Overview

The fast multipole method (fmm) is an algorithm that accelerates the application of certain integral oper-
ators, namely those satifying the Calderón-Zygmund conditions. After discretization, this application may
be expressed in the form

f(yj) =
NX
i=1

u(xi)K(yj ; xi): (118)

Naively, if we have N source points fxig for the �eld u, and N target points fyjg for the �eld f , this
summation would require O(N2) operations. fmmallows us to reduce the computational complexity to
O(N), whic is essential for the operation of our DFT solves. This acceleration is accomplished by using a
hierarchical partition of space into a tree structure. This tree structure allows e¢ cient queries for points
separations so that we can insert approximations for the kernel action at appropriate points.
We use a diagram of the tree structure to illustrate the whole algorithm in one picture (Figure 2). The

importance of this bird�s eye view is that it relates the algorithm computations to the data structure used
by our fmm, and it will prove to be very useful when we discuss the parallel version that we have developed.
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After the spatial decomposition stage, the fmm can be summarized in three stages: upward sweep,
downward sweep, and evaluation step. In the upward sweep, the objective is to build the multipole expansions
(me s) for each node of the tree. The me s are built �rst at the deepest level, level L, and then translated to
the center of the parent nodes. This is illustrated in Figure 2 by the black arrows going up from the nodes
on the left side of the tree (the process is of course performed for the whole tree). Thus, the me s at the
higher levels do not have to be computed from the particles, they are computed from the me s of the child
nodes. In the downward sweep of the tree, �rst the me s are transformed into local expansions (le s) for
all the boxes in the interaction list � a process represented by the dashed red-colored arrows in Figure 2.
For a given cell, the interaction list corresponds to the cells of the same level that are in the far �eld, but
which are not in the interaction list of its parent cell. Once the me s have been translated into le s, the
le s of upper levels are translated to the centers of child cells, and their in�uence is added up to obtain the
complete far domain in�uence for each box at the leaf level of the tree. This process is represented by the
dashed blue-colored arrows going down the right side of the tree in Figure 2. At the end of the downward
sweep, each box will have an le that represents the complete far-�eld for the box. Finally, at the evaluation
step, for every particle on every node at the deepest level of the tree, the total �eld is evaluated by adding
the near-�eld and far-�eld contributions. The near �eld of the particles in a given cell is obtained by directly
computing the interactions between all the particles in the near domain of the box. The far �eld of the
particles is obtained by evaluating the le of the box at each particle location.

3.2 Parallel Strategy

petfmm is a parallel implementation of the fmm algorithm designed to be portable, extensible, scalable,
and easily maintained [2]. The code base is quite small, and the parallel execution completely reuses the
serial code, simplifying testing and optimization. The goal of our parallel strategy is to achieve an optimal
distribution of the computational work among processes at runtime with a minimal communication overhead,
and in this sense is dynamic load balancing.
We partition work according to subtrees of the original fmm tree. An important element of our parallel

strategy is that partitioning are carried out automatically by an optimization tool, without intervention of
the user. This is an alternative to the popular space-�lling curve methods for parallel partitioning, which
were �rst used for tree-codes in [7], and continue to be the prevalent method in both tree-codes and fmm
implementations. Experiments reported in [6] using space-�lling curve partitions for 200,000 particles in 12
processors, showed that elapsed wall-clock times for each processor varied between 60 and 140 seconds (as
this work was before the time of multi-core processors, we keep the terminology �processor� rather than
�process�). Thus, these experiments provide clear evidence that a uniform data partition via space-�lling
curve methods can result in considerable load imbalance, which we eliminate.
Our strategy for parallelization provides dynamic load balancing through an optimization procedure,

based on a model of work and communications for the algorithm. We utilize the tree structure associated
with the hierarchical decomposition of the domain in order to decompose the fmm into subtrees, for which
the computational model has been developed. Notice that the tree structure has many roles: it is used as a
space partitioner for the particles, it organizes the storage for the multipole expansions and local expansions,
and it indicates the relations between nodes in the same level of the tree (whether two nodes are from the
local domain list or the interaction list).
We apply a sub-division of the computations by cutting the d-dimensional tree at a certain level k, as

shown in Figure 4. This procedure creates a root tree, that contains the �rst k levels of the original tree,
and 2dk local trees, each corresponding to one of the lower branches of the original tree. One key point when
partitioning the tree is to obtain more subtrees than the number of available processes, so that work can be
evenly distributed across the processes.
In the bird�s eye view of the whole algorithm, data and computations were related to nodes of the tree

structure. When partitioning the tree representation into subtrees, computations that require data from
di¤erent nodes of the partitioned tree might access data from several di¤erent partitions. If this is the case,
communication between subtrees will happen as illustrated in Figure 3. By relating computations to nodes

16



of the tree, the work carried out by each subtree and the communication between di¤erent subtrees can be
estimated, which is then used to optimally distribute the subtrees over available processes.
In order to assign subtrees to processes, we build a graph representation from the partitioned tree, as

illustrated on Figure 4. The graph is assembled such that the vertices of the graph correspond to the
subtrees and the edges correspond to communication between subtrees. Using the graph representation, we
can assign weights to the vertices which are proportional to the amount of computational work performed
by each subtree, and assign weights to the edges which are proportional to the amount of communication
that happens between two subtrees.
The load balancing in the parallel algorithm is done by partitioning the weighted graph into as many parts

as the number of available processes, and then assigning the subtrees to the processes according to the graph
partitions. The problem of optimally partitioning the graph, such that the partitions are well-balanced and
minimize the communication, is solved by the graph partitioning tool ParMetis [3, 4]. ParMetis is an open
source graph partitioning tool, and is widely used in mesh partitioning applications. Figure 5 demonstrates
the load balancing scheme at work. In an example computation, 1 million particles following a uniform
distribution have been placed inside a square-shaped domain that is then hierarchically decomposed into a
tree representation; the depth of the tree before partitioning is L = 8. The tree is then cut at level k = 4,
resulting in 256 subtrees that are then distributed among 16 processes.

3.3 Electrostatics

In preparation, for the use of petfmm for DFT electrostatics, we have developed a infrastructure for simple
3D electrostatics, as described in [13]. This was applied to a few large bioelectrotatic problems in order to
evaluate accuracy and scalability.
Kernels for both single and double layer charge densities were developed for both multicore CPUs, such

as the Intel Nehalem, and GPUs, such as the NVIDIA Tesla 1060C. Our novel data-aware queueing system
allows the execution of either kernel type without changing the underlying fmm code. We have demonstrated
good scalability for N > 1000 [14], which will be easily satis�ed by our DFT calculations where we expect
N �= 107.
We have developed a new PETSc compatibility layer for petfmm that will allow easy integration into the

existing DFT code. Input and output data are organized in PETSc Vec objects, and MatShell wrappers for
fmm evaluation allow it to be seamlessly used in all PETSc solvers.
To demonstrate the scalability on large problems, we use collections of randomly oriented lysozyme

molecules arranged on a regular Cartesian grid, as a mimic of the Brownian dynamics calculations performed
by McGu¤ee and Elcock [5] at each time step. One such collection, of 1000 proteins, is shown in Figure 6.
The surface charge density for an isolated lysozyme molecule is plotted in Figure 7.
The largest simulation we have conducted consists of 10,648 molecules, where each surface was discretized

into 102,486 elements. This calculation, which models more than 20 million atoms and possesses over one
billion unknowns, required only approximately one minute per iteration on 512 nodes. The results of a more
detailed scalability study of our code is shown in Figure 8. The present code can calculate the matrix-vector
product of 6.4 billion elements in 57 seconds. This amounts to a performance of 34.6 TFlops, as shown in
Table 1

4 Implementation of the FMM method (written by Dr. Matt
Knepley)

Dr Knepley is part of the grant through a subcontract. His role is to help develop a 3D version of the dielectric
DFT code, which includes the components without dielectrics �rst. He is also responsible for developing fast
algorithms for electrostatics and dielectrics that will be used in the code. He has made progress on both
fronts in Year 2.
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Table 1: Flops calculation

Description Equation Value
Total number of points Np 6:4� 109
Number of FMM cells Ncell 88

Points per cell Np=Ncell 381
Interaction list Nlist 27
Operations per interaction K 30
Time to solution T 57
Total number of operations KNpNlistNp=Ncell=T 3:46� 1013

4.1 DFT Development

We have produced a three dimensional Density Functional Theory (DFT) code capable of simulating ionic
liquids in generic geometries using both hard sphere and electrostatic interaction potentials. This code
follows the development in [9] and [10]. It is based on the PETSc library [11], and in particular on the
ability of PETSc to manage parallel multidimensional grids and Fast Fourier transforms (FFTs). With these
building blocks, we could create a e¢ cient, scalable code incorporating the key computational insights for
DFT, detailed below.
The most important piece of technology introduced in our 3D DFT simulation is the use of spectral

quadrature, which enables accurate conservation of Rosenfeld�s fundamental measures, as well as fast and
accurate evaluation of RFD electrostatics. In one dimension, selection of a quadrature rule which accurately
captures the volume of a ball, the surface of a sphere, and the directional average over the sphere is straight-
forward, even in the presence of discontinuities in the �eld being integrated. However, in three dimensions,
this problem is intractable and discontinuities in the integrand, generally coming from a weighting functions,
can result in O(1) errors in the result. The method of spectral quadrature moves the integral to Fourier
space, using L2 isometry, where both integrands are smooth, and can be readily integrated using traditional
quadrature. Then the result, also smooth, is accurately moved to real space using the FFT.
As an example, when we evaluate the basis vectors n� used in Rosenfeld�s formulation of the hard

sphere interaction potential, we must convolve the density with a discontinuous weight function. Using the
FFT produces unacceptable errors and non-conservation of the fundamental meaures. Thus we use analytic
Fourier transforms of the weight functions in order to stably evaluate each n�, a simple example of spectral
quadrature. This same method was applied to generate fast and accurate evaluations of the RFD reference
density which using an averaging integral with a discontinuous weighting function. Moreover, the method
of spectral quadrature was combined with a precise windowing method to reduce the RFD evaluation time
from O(N2) to O(N logN), reducing runtime from weeks to hours.
The incorporation of the RFD model for local electrostatic correlations [10] as necessitated the intro-

duction of another unknown �eld, �, the local inverse screening length. We have augmented the existing
nonlinear algebraic solver to handle multiple �elds. We have also introduced a nonlinear preconditioning step
which provides a local approximate solution to � before using the Picard iteration to improve the density
estimate. This was shown to provide much better convergence for the overall nonlinear system.

4.2 Electrostatics

The following descriptions of the algorithms will be implemented in the 3D DFT code by Dr. Knepley.
They are generally applicable and therefore he is testing them on other systems because these systems
have established benchmarks and compute faster than DFT. In this way, the implementation is much more
e¢ cient.
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Figure 2: Synthetic model used thorough out the numerical experiments. (a) Domain and density anomaly
and (b) the corresponding analytic gravity �eld gz (mGal). The inclusion is indicated by the transparent
blue cube. See text for dimensions of the domain and density anomaly.

4.2.1 Using FMM

In preparation, for the use of petfmm for DFT electrostatics, we have developed an infrastructure for simple
3D electrostatics, as described in [12] and [13]. This was applied to a few large problems of gravity inversion
and bioelectrotatics in order to evaluate accuracy and scalability. For three dimensions, we have improved the
scalable partitioning, and now allow fully parallel input and output of the charge, potential, and electric �eld
distribution. In Fig. 2, we show a density anomaly and the corresponding gravity �eld generated which we
used to benchmark the parallel performace of petfmm in three dimensions. In Table 3, we see that petfmm
shows good strong scaling up to 2000 processors. In the coming year, we hope to reduce the imbalance due
to work on the root tree to enable strong scaling to 20,000 cores.
Kernels for both single and double layer charge densities were developed for both multicore CPUs, such

as the Intel Nehalem, and GPUs, such as the NVIDIA Tesla 1060C. Our novel data-aware queueing system
allows the execution of either kernel type without changing the underlying fmm code. We have demonstrated
good scalability for N > 1000 [14], which will be easily satis�ed by our DFT calculations where we expect
N �= 107.
We have developed a new PETSc compatibility layer for petfmm that will allow easy integration into the

existing DFT code. Input and output data are organized in PETSc Vec objects, and MatShell wrappers for
fmm evaluation allow it to be seamlessly used in all PETSc solvers.
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Figure 3: Strong scaling of petfmm on CADMOS BG/P. The times reported here represent the total time
taken to perform the multipole summation (ParaFMMEvaluate). (S) denotes -mode SMP, (D) denotes -
mode DUAL, (V) denotes -mode VN. � indicates e¢ ciency was computed w.r.t the 64 CPU execution time
(p1 = 64).

4.2.2 BIBEE Approximation

In preparation for the calculations necessary for dielectric boundary terms in DFT, we have examined
approximations for calculation of an electrostatic �eld in the presence of a dielectric boundary. The BIBEE
approximation [15] appears to be an e¤ective option for DT since it relies only on approximating the integral
operator in the boundary integral equation (BIE) formulation of electrostatics, rather than speci�cs of the
problem setup and method of evaluation as in the Generalized Born (GB) framework. Moreover, we were
able to prove rigorous upper and lower bounds for the BIBEE approximation [16], as opposed to GB.
In recent work, we have deepened the analysis of BIBEE by considering the case of a spherical inclu-

sion [17], for which a complete analytic solution is available. This led to the construction of the superior
BIBEE/M approximation and a better understanding of separable approximations for potential solutions
with a dielectric jump. We anticipate that this scheme can be directly used in DFT to provide good approx-
imations to the long-range electrostatic potential �. However, it also seems likely that this approximation
technique can be leveraged to simplify the calculation of the near-�eld electrostatic correlations as well.

5 Local Equilibrium Grand Canonical Monte Carlo

This work is in collaboration with Dr. Dezs½o Boda of the University of Pannonia, Hungary. It stems out of
discussions that we had about the dielectric DFT functional on a grant-sponsored trip to his department.
This work is not meant to replace any work on DFT, but rather as an alternative method for scientists to
use if the DFT is not appropriate for them.
The purpose of the LE-GCMC method is to develop a well-de�ned molecular model computed by Monte

Carlo (MC) simulations coupled to the Nernst-Planck (NP) equation of electrodi¤usion:

j�(r) = � 1

kT
D�(r)c�(r)r��(r); (119)
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where T is temperature, k is Boltzmann�s constant, j�(r) is the particle �ux density (� = 1; : : : ;M refers
to a di¤using species), D�(r) is the di¤usion coe¢ cient pro�le, c�(r) is the density (concentration) pro�le,
��(r) = ��0 (r)+ z

�e�(r) is the electrochemical potential pro�le with ��0 (r) being the the chemical potential
in the absence of an applied electric �eld, z� the valence, e the electronic charge, and �(r) the mean potential.
MC is useful for ions at a dielectric interface as well because we have already created a fast method to include
dielectrics in the MC and therefore including it in the method outlined below is straight-forward and will
constitute one of the next steps of the project.
The LE-GCMC is a big step forward because we suggest (for the �rst time, to our knowledge) applying MC

simulations locally for subvolumes of the simulation cell that are assumed to be in local equilibrium. Because
these subvolumes are characterized by their volumes Vi, chemical potentials, �i, and the temperature, T ,
they represent open systems and, therefore, the native ensemble of the simulations in these subvolumes is
the GC ensemble. Therefore, we introduce the LE-GCMC method to simulate a globally non-equilibrium
steady-state system with spatially varying chemical potential. In this method, we apply independent particle
insertion/deletion steps for the various subvolumes with acceptance probabilities

p�i = min

�
1;

N�
i !

(N�
i + �)!

V �i exp

�
��U � ��

�
i

kT

��
; (120)

where N�
i the number of particles of species � in subvolume Vi before insertion/deletion, �

�
i is the chemical

potential of species � in this subvolume, and � = 1 for insertion, while � = �1 for deletion (Metropolis
sampling). Particle displacements from subvolume Vi to subvolume Vj are accepted with probability

p�i!j = min

�
1; exp

�
�
�U � (��j � ��i )

kT

��
: (121)

The mean electrical potential pro�le is computed in the simulation �on the �y�by using the inserted ions
as test charges. The electrical potentials computed at the position of the inserted ion are averaged over the
subvolumes.
�U is the energy change associated with the insertion/deletion/movement of an ion and it contains the

ion�s interaction with an applied potential, z�e�appl(r), where �appl(r) is the solution of Laplace�s equation
with the prescribed boundary condition. The LE-GCMC steps are coupled only through temperature and
energy. The energy change �U contains not only the interaction energies between particles in subvolume Vi,
but also the e¤ect of particles outside this subvolume. The interactions with these particles can be considered
as an external constraint on the particles in subvolume Vi.
The result of the LE-GCMC simulation is a set of density pro�les,

�
c1(r); : : : ; cM (r)

	
, obtained for a set

of chemical potential pro�les and the �xed temperature,
�
T; �1(r); :::; �M (r)

	
. The LE-GCMC simulation,

therefore, provides the same information that DFT does with the di¤erence that it uses the chemical poten-
tials as independent variables of the ensemble instead of the densities. The advantages of the LE-GCMC
technique are that (1) it can be applied to three-dimensional systems with a wider variety of geometries and
pair-potentials, (2) it provides exact results (apart from statistical and system size errors), while theories
necessarily contain approximations, and (3) it provides a mean electrical potential that automatically satis-
�es Poisson�s equation, because Poisson�s equation is true in every sampled con�guration, and consequently,
it is true for their average too. The iteration procedure given in this paper ensures that the resulting mean
potential satis�es the prescribed boundary condition.
The LE-GCMC simulation then provides the density pro�les for given chemical potential pro�les. Sub-

stituting these quantities and the di¤usion coe¢ cient pro�les (it must be provided by the user) into the NP
equation, the �ux density can be calculated.
There is no guarantee that even an intelligent initial guess for the chemical potential pro�les provides �ux

densities that satisfy the continuity equation. Therefore, we compute new chemical potential pro�les that
would provide �ux densities that satisfy the continuity equation using the density pro�les, c�i (n), obtained
from the LE-GCMC simulation in the nth iteration. These new chemical potenial pro�les, ��i (n + 1), are
used in the LE-GCMC simulations in the next, (n+1)th, iteration. The heart of the iteration algorithm can
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be given as follows. The divergence theorem for the ith subvolume is

0 =

Z
Vi

r � j�(r)dV =
I
Si

j�(r) � ds; (122)

where Si denotes the surface of the volume element. If we denote the faces of volume element Vi by Sij on
which the densities, chemical potentials, and �ux densities are assumed to be constant, the surface integrals
can be written as a sum over these faces:

0 =
X

j; Sij2Si

j�(Sij) � n(Sij)aij ; (123)

where n(Sij) and aij denote the outward normal vector and area of face Sij , respectively. Substituting the
NP equation for j�(Sij), we obtain the equation for the computation of the chemical potentials for the next
iteration:

0 =
X

j; Sij2Si

D�
ijc

�
ij(n)r��ij(n+ 1) � nij (124)

where D�
ij = D�(Sij), c�ij = c�(Sij), ��ij = ��(Sij), and nij = n(Sij).

Boundary conditions are that the chemical potential is ��;L = ��;L0 + z�e�L in the left hand side, while
it is ��;R = ��;R0 + z�e�R in the right hand side bulk for species �. The bulk chemical potentials, ��;L0 and
��;R0 corresponding to the prescribed concentrations 0.1 and 1 M were calculated with the Adaptive GCMC
method of Malasics and Boda. The electrical potential in the left bath is chosen to be �L = 0, so the value
�R gives the voltage.
The calculation domain is divided into slabs indexed from 0 to N+1 and centers denoted by xi. Boundary

conditions are set at x0 and cN+1. The applied potential is a linear function between 0 at x0 and �R at
xN+1 in the planar geometry. Chemical potentials and densities in the slabs are denoted by ��i and c

�
i .

Quantities on the boundaries of neighboring slabs are denoted by prime. The �ux density, the concentration,
and the di¤usion coe¢ cient on the boundary of the ith and (i+1)th slabs are denoted by j0�i , c

0�
i , and D

0�
i ,

respectively. Eq. 124 can be written for the ith slab as

0 = D0�
i c
0�
i (n)

��i+1(n+ 1)� ��i (n+ 1)
xi+1 � xi

�D0�
i�1c

0�
i�1(n)

��i (n+ 1)� ��i�1(n+ 1)
xi � xi�1

; (125)

where density c0�i is obtained from interpolation between c�i and c
�
i+1. The boundary conditions are �

�
0 =

��;L, ��N+1 = ��;R, c�0 = c�;L, and c�N+1 = c�;R. This yields N linear equations for the N unknowns,
f��i (n+ 1); : : : ; ��i (n+ 1)g.
We have done an implementation of the procedure for a one-dimensional test system of ions di¤using

through a membrane. This made it possible to make a direct comparison with DFT-PNP results. The
results were indistinguishable after just 3 or 4 iterations (not shown). A manuscript of the work was recently
published in Journal of Chemical Theory and Computation.
Currently work is being done to include dielectric interfaces. This is straight-forward since Dr. Boda�s

MC simulations already include this feature due to a long-time collaboration to e¢ ciently include it in the
simulations. This should prove to be a very useful route for many scientists to include dielectric interfaces
into their ion current calculations.

6 Connecting with experiments in nano�uidic devices

Experiments on real-world systems is the ultimate test of any theory and part of this year was designed to
interface with experimental systems that could be used to test the real-world applicability of the dielectric
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Figure 4: Comparing DFT with charge inversion streaming currents experiments. The solid line is the DFT
result and the symbols are the experiments of van der Hayden et al. (PRL, 96:224502) . The dashed line
connects the symbols and is meant to guide the eye. The change of sign of the current indicates that charge
inversion is present. (a) CaCl2 concentration is increased. (b) CoSepCl3 concentration is increased.

functional (which is afterall the overarching goal of producing such a functional). This work was mainly on
nano�uidic devices.
This work is in collaboration with Prof. Sumita Pennathur at the University of California at Santa

Barbara. The grant supported trips to UCSB to discuss the work and the one paper that we produced last
year with another in preparation.
Fluidic devices can be fabricated with nanometer-scale features using the same techniques used for silicon

semiconductors. These devices hold the promise to analyze, separate, concentrate, manipulate, and detect
speci�c molecules with exquisite sensitivity and high throughput. Applications include DNA sequencing,
medical testing, and biowarfare defense. These applications can be realized because the �uids are con�ned
to slits or channels whose smallest dimension is tens of nanometers in size (with the other dimensions still
macroscopic). The smaller the con�ning direction is, the more that surface e¤ects� which are negligible
in macroscopic systems� come to dominate over normal bulk properties. The ionic current and velocities
through these nanoscale electrokinetic devices is then de�ned by the structure of the electrical double layers
at the device walls. Modeling such devices then requires accurate� and hopefully fast-computing� theories
to calculate the double layers. DFT is such a theory and that is what we did in a �rst-of-a-kind application
in the �eld of nano�uidics [18]. In that paper, we examined the e¤ect of �nite ion size in nano�uidic
devices by modeling the ions as charged, hard spheres. We showed that the ion-ion correlations included in
DFT� but absent from Poisson-Boltzmann theory and many of its generalizations� produce a wide range of
counterintuitive phenomena (e.g., charge inversion), both in the electrical double layers at device walls and
in the resulting qualitatively di¤erent pressure-driven and electro-osmotic currents.
We also reproduced very challenging experimental data that involved charge inversion. Also called over-
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Figure 5: Energy conversion e¢ ciency as a function wall surface charge for ions of diameter (in nm) 0.3
(magenta), 0.6 (green), 0.9 (gray), 1.2 (red), and 1.5 (blue). The surface charge on the slit walls is negative,
the slit height is 10 nm, the counterion concentration is 100 mM, its di¤usion coe¢ cient is 0.5 m2/s, and
the co-ion is Cl-. The range of e¢ ciencies for each surface charge is bracketed by choosing the Stern layer
height to be 0 or the diameter of the counterion.

charging, charge inversion occurs when more counterions are adsorbed on a charged surface than is necessary
to neutralize the surface charge. As a result, a layer of co-ions is adsorbed behind the �rst layer of counterions.
When enough co-ions form this second layer, the mean electrostatic potential can change sign (compared to
the potential at the wall surface). Since this potential de�nes the velocity of the ions when they are driven by
an applied voltage, a change of sign indicates a reversal of velocity and this produces qualitatively di¤erent
results than a potential that does not change sign (as in most of the theories used on nano�uidic devices).
DFT is one of the few theories that produces charge inversion and we used it to reproduce� for the �rst time
by any theory that we are aware of� the experiments of Cees Dekker�s lab that showed charge inversion (Fig.
4). This work is also important because it showed that DFT can reproduce experimental data for systems
with particles that are trivalent (+3 charge) and large (9 Å in diameter) and at high concentrations (up to
1 M). No other theory like Poisson-Boltzmann we are aware of can do this.
Another nano�uidics application of was recently published in the prestigeous Nano Letters. This con-

cerned using the ion correlations in DFT to produce very high e¢ ciency in the energy conversion process
from pressure to voltage. Ions in nano�uidic devices can be moved either by applying pressure or by ap-
plying a voltage. When moved with pressure, the ions produce a streaming potential and this can be used
to drive an electrical system. The e¢ ciency of this process was always described a being very low, but this
theoretical work did not include the e¤ect of the ions�size. With DFT we included this an showed that very
high e¢ ciencies (>50%) were possible, in principle, and >30% in devices that are fabricated today. This is
shown in Fig. 5.
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